MCAR multivariate: mMCAR Class
mMCAR
mMCAR
A class to generate missing data in a dataset based on the Missing Completely At Random (MCAR) mechanism for multiple features simultaneously.
Args: X (pd.DataFrame): The dataset to receive the missing data. y (np.array): The label values from dataset missing_rate (int, optional): The rate of missing data to be generated. Default is 10. missTarget (bool, optional): A flag to generate missing into the target.
Example Usage:
# Create an instance of the MCAR class
generator = MCAR(X, y, missing_rate=20)
# Generate missing values using the random strategy
data_md = generator.random()
random
Function to randomly generate missing data in all dataset.
Returns: dataset (DataFrame): The dataset with missing values generated under the MCAR mechanism.
Reference: [1] Santos, M. S., R. C. Pereira, A. F. Costa, J. P. Soares, J. Santos, and P. H. Abreu. 2019. Generating Synthetic Missing Data: A Review by Missing Mechanism. IEEE Access 7: 11651–67.
binomial
Function to generate missing data in columns by Bernoulli distribution for each attribute informed.
Args: columns (list): A list of strings containing columns names.
Returns: dataset (DataFrame): The dataset with missing values generated under the MCAR mechanism.
Reference: [1] Santos, M. S., R. C. Pereira, A. F. Costa, J. P. Soares, J. Santos, and P. H. Abreu. 2019. Generating Synthetic Missing Data: A Review by Missing Mechanism. IEEE Access 7: 11651–67.